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Abstract 

Pair bonds represent some of the strongest attachments we form as humans. These re-
lationships positively modulate health and well-being. Conversely, the loss of a spouse 
is an emotionally painful event that leads to numerous deleterious physiological effects, 
including increased risk for cardiac dysfunction and mental illness. Much of our under-
standing of the neuroendocrine basis of pair bonding has come from studies of mon-
ogamous prairie voles (Microtus ochrogaster), laboratory-amenable rodents that, unlike 
laboratory mice and rats, form lifelong pair bonds. Specifically, research using prairie 
voles has delineated a role for multiple neuromodulatory and neuroendocrine systems 
in the formation and maintenance of pair bonds, including the oxytocinergic, dopamin-
ergic, and opioidergic systems. However, while these studies have contributed to our 
understanding of selective attachment, few studies have examined how interactions 
among these 3 systems may be essential for expression of complex social behaviors, 
such as pair bonding. Therefore, in this review, we focus on how the social neuropep-
tide, oxytocin, interacts with classical reward system modulators, including dopamine 
and endogenous opioids, during bond formation and maintenance. We argue that an 
understanding of these interactions has important clinical implications and is required 
to understand the evolution and encoding of complex social behaviors more generally. 
Finally, we provide a brief consideration of future directions, including a discussion of 
the possible roles that glia, specifically microglia, may have in modulating social be-
havior by acting as a functional regulator of these 3 neuromodulatory systems.
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Understanding the endocrine, neuromodulatory, and 
neurobiological basis of pair bonding has dual import-
ance. Not only do we gain insight into what defines our 
humanity, but we also potentially identify ways in which 
we can harness the positive health consequences of social 
bonding and/or mitigate the deleterious effects of bond 
disruption and lack of attachment. A growing human re-
search literature has begun investigating the endocrine 
basis of human pair bonding via multiple perspectives—
for instance, by measuring peripheral hormone levels and 
manipulating nonapeptide systems through intranasal de-
livery of oxytocin (OXT) and via genetic studies linking 
variation in pair bond–relevant traits to allelic variation 
in neuroendocrine genes (1-3). In addition, neuroimaging 
studies have identified key neural circuits implicated in 
attachment and social processing (4-7). However, these 
studies are inherently limited in the types of manipulations 
and level of resolution they can attain.

To overcome these limitations, socially monogamous 
prairie voles (Microtus ochrogaster) provide an excellent 
and highly tractable model for studying pair bonding at 
multiple biological levels. These laboratory-amenable ro-
dents form lifelong pair bonds that are characterized by a 
selective affiliative preference for a mating partner and ag-
gression toward other voles. Additionally, prairie voles can 
be compared to closely related but promiscuous meadow 
voles, providing a valuable comparative model to home in 
on the species differences that have contributed to attach-
ment formation exclusively in prairie voles. In this review, 
we focus on a subset of the neuromodulatory systems that 
govern attachment formation with a focus on how the social 
neuropeptide OXT interacts with classical reward system 
modulators, including dopamine (DA) and endogenous 
opioids during bond formation and maintenance. We high-
light the role of these systems in monogamous pair bonding 
with brief consideration of their highly conserved role in 
other affiliative behaviors. Finally, in addition to consid-
ering the neural basis of social attachment, we discuss the 
possible roles that glia, specifically microglia, may have in 
modulating the communication among these 3 systems as 
it relates to complex social behaviors.

Sociocognitive and Reward Signaling in 
Attachment

Bonding is a form of complex social learning that incorp-
orates social sensory information with reward, overlaid by 
experience. Decades of research on voles has elucidated a 
role for nonapeptidergic, dopaminergic, and opioidergic 
systems; here we provide a brief overview of each of these 
systems, which have been extensively reviewed elsewhere 
(8-11). Much of the work delineating a role for these 

systems in pair bonding has relied on the partner pref-
erence test, a social choice assay in which the focal vole 
can choose to spend time with either their mating partner 
or a novel opposite-sex vole, each  tethered on opposite 
sides of an apparatus. Pair-bonded voles will show a ro-
bust preference to huddle with their tethered partner, while 
non-bonded animals will not show a social preference. 
Among the early observations was that mating facilitates 
partner preference, generating the opportunity to pursue 
gain- and loss-of-function experiments by facilitating bond 
formation in the absence of mating or blocking bond 
formation despite mating.

Social nonapeptides

Oxytocin (OXT) and vasopressin (AVP) are evolutionarily 
ancient 9-amino-acid peptides (nonapeptides) that have a 
strikingly conserved role in social behavior across organ-
isms (12). In mammals, both peptides, which differ at 2 of 
9 amino acid sites, are produced in the paraventricular nu-
cleus and supraoptic nucleus of the hypothalamus, as well 
as in sparse cell populations in limbic structures (13-15); 
the functional role of the latter source of these peptides re-
mains largely unknown. Hypothalamic AVP and OXT are 
the primary source of peripheral release of these peptides, 
where they modulate a variety of physiological functions, 
including osmotic balance and blood pressure, and partur-
ition and lactation, respectively (16-19). In addition, OXT 
and AVP neurons project throughout the central nervous 
system where peptide release can modify neuronal function 
either through volume or synaptic transmission (20, 21).

OXT and AVP both play important roles in pair 
bonding. However, unlike OXT, the effects of AVP are 
sexually dimorphic, likely due to the presence of a testos-
terone response element in the AVP promotor that leads 
to elevated levels of AVP in the brains of males compared 
to females (8, 22-24). There are 3 receptors for AVP — 
V1aR, V1bR, and V2R. However, only V1aR and V1bR 
are located within the central nervous system, with V1aR 
widely expressed across limbic regions and directly impli-
cated in pair bonding. Specifically, injections of AVP facili-
tate partner preference, whereas V1aR antagonists block 
partner preference formation (25-27). This is mediated by 
V1aR in the ventral pallidum—a region that reciprocally 
innervates the nucleus accumbens (NAc) and is a core part 
of the limbic loop of the basal ganglia that regulates mo-
tivational salience, behavior, and emotion (28-30). V1aR 
activation is necessary for bond expression in male prairie 
voles, even after the initial formation period (31).

OXT signaling is also necessary and sufficient for bond 
formation. While OXT was initially thought to play a more 
pronounced role in female prairie voles (25), more recent 
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work has solidly established a role for OXT in both male 
and female bonding (32). Administration of OXT facili-
tates partner preference formation even in the absence of 
mating, while blockade of oxytocin receptors (OXTR) im-
pairs preference formation despite mating in both male and 
female prairie voles (25, 33). More recent work has also 
shown that ongoing OXT signaling is required for the con-
tinued expression of an established pair bond. However, 
as demonstrated in male prairie voles, continuous receptor 
blockade across multiple days is required to impair an ex-
isting partner preference, suggesting that the bond is not 
immediately erased, but rather “unlearned” though an on-
going monitoring of the attachment relationship (34).

OXT signaling localized in the NAc is particularly im-
portant for mediating bonding. Monogamous prairie voles 
have much higher OXTR densities in the NAc than their 
promiscuous cousin, the meadow vole, in both males and 
females (27, 35, 36), and blockade of this receptor popu-
lation via local antagonist infusion is sufficient to impair 
partner preference formation in both male and female 
prairie voles (25, 32, 37). Furthermore, in female prairie 
voles, increasing OXTR expression in the NAc increases 
alloparental responsiveness and partner preference forma-
tion (38), whereas decreasing OXTR expression via RNAi 
in the NAc inhibits social attachment and parental care 
(39). In addition, OXT is released into the NAc of female 
prairie voles during mating, providing a potential explan-
ation for how mating facilitates preference formation (37). 
Finally, individual differences in OXTR levels in the NAc 
are also tied to variation in bond formation within male 
prairie voles (40).

Dopamine and endogenous opioids

In addition to OXT, reward signaling via NAc dopamine 
and endogenous opioids is also required for pair bond for-
mation in males and females (10, 41, 42). DA has been 
broadly implicated in mediating reward learning across 
species, and akin to OXT, DA is released during mating in 
male and female prairie voles (43, 44). Gain- and loss-of 
function pharmaceutical manipulations of DA signaling fa-
cilitate and impair partner preference formation, respect-
ively. However, unlike OXTR, there are multiple dopamine 
receptors, and more selective pharmacological manipula-
tions suggest that D2-like dopamine receptor (D2R) stimu-
lation facilitates bonding while D1-like receptor (D1R) 
stimulation impairs preference formation in male and fe-
male prairie voles (42, 43, 45, 46). Intriguingly, the D1:D2 
receptor ratio increases following bond formation, which 
may facilitate bond exclusivity, preventing the formation 
of another bond even in male voles that engage in extra-
pair copulation (47, 48). However, it is important to note 

that D2-like receptors include D2, D3, and D4 receptors 
and that D1-like refers to D1 and D5 receptors (49). As the 
pharmacology of these receptors is relatively promiscuous, 
it remains to be determined exactly which of the receptors 
within each class are important and required in pair bond 
formation and maintenance.

The role of opioids in social motivation, social reward, 
and social attachment has also been demonstrated in sev-
eral species, including rats, mice, puppies, guinea pigs, 
prairie voles, humans, and chicks (50-52). However, it is 
only within the last 2 decades that researchers have begun 
to study the functional role of opioids and their corres-
ponding receptors in the context of pair bonding. The en-
dogenous opioid system comprises 3 classes of receptors (μ, 
κ, δ), and their respective endogenous ligands, enkephalin, 
dynorphin, and endorphin (53). In 2011, Burkett et al dem-
onstrated in female prairie voles the necessity of μ opioid 
receptors (MORs) in the dorsal striatum in the formation 
of pair bonds, mediated partially through a reduction in 
mating behavior (54). Resendez and colleagues were able 
to further expand on this finding. They confirmed that in 
female prairie voles, MORs in the dorsal striatum mediate 
partner preference by affecting mating behaviors, whereas 
MORs in the dorsomedial NAc shell facilitate partner pref-
erence formation through positive hedonics associated with 
mating (55). Additionally, Resendez and colleagues dem-
onstrated in both male and female prairie voles that in the 
NAc shell, κ opioid receptors (KORs), and not MORs, me-
diate selective aggression, a maintenance behavior that is 
seen in an established pair bond (56).

Systems Communication in Social 
Attachment: Oxytocinergic, Dopaminergic, 
and Opioidergic Interactions

Each of the above-mentioned neuromodulatory systems 
does not act in a vacuum. In particular, OXT and AVP differ 
at only 2 amino acid residues and exhibit crossreactivity 
for their respective receptors. Evidence supporting a func-
tional role for such crossreactivity comes from studies 
showing that OXT can act via V1aR in the lateral septum 
to impair peer affiliation in non-monogamous meadow 
voles (57). However, the extent to which these interactions 
across nonapeptide systems modulate pair bonding re-
mains unknown, along with information about the AVP 
system’s interactions with the DA and opioidergic systems 
in the prairie vole model. As such, the remainder of this 
review will focus on behaviorally relevant interactions be-
tween OXT, DA, and opioid systems.

The full extent and mechanisms by which OXT, DA, and 
opioid systems interact to mediate behavioral transitions 
across bond formation and maturation remains largely 

D
ow

nloaded from
 https://academ

ic.oup.com
/endo/article/162/2/bqaa223/6046188 by U

niversity of C
olorado user on 10 M

ay 2021



4  Endocrinology, 2021, Vol. 162, No. 2

unexplored. In order to successfully form and maintain a 
bond, an animal must integrate social sensory information, 
social reward, experiential factors, and internal state. One 
way to integrate these multiple layers of information could 
be through coordinated signaling. Likewise, bonding results 
in profound changes in behavior, which could be mediated 
in part by effects of one system on another. Below we out-
line what is currently known about interaction of these sys-
tems in social bonds, as well as unexplored interactions that 
may contribute to bond-related behaviors based on known 
interaction of these neuromodulatory systems in other con-
texts (Fig. 1). The majority of studies investigating these sys-
tems in the context of pair bonding studies have focused on 
the nucleus accumbens, driving the focus on this region in 
the context of this review. However, other brain regions are 
also likely to be involved, particularly within the context of 
systems communication. Specifically, the medial prefrontal 
cortex, the dorsal striatum, the ventral pallidum, the ventral 
tegmental area, bed nucleus of the stria terminalis, insular 
cortex, and the amygdala are involved in social decision 

making and reward learning, and represent intriguing tar-
gets for future study (58-68). While most of the aforemen-
tioned brain regions have studied at least 1 of the 3 systems 
(OXT, DA, or opioid) within the context of pair bonding, 
the insular cortex remains unstudied in pair bonding. The 
insular cortex is positioned to link integrated social sen-
sory cues within this network to produce flexible and ap-
propriate behavioral responses to socioemotional cues, as 
evidenced by work on oxytocin-dependent social approach 
in rats (63). Therefore, this brain region, which directly in-
nervates the NAc, has the potential to serve a prominent 
role in modulating social behavior in prairie voles and rep-
resents an important target for future research.

Oxytocinergic, dopaminergic, and opioidergic systems 
act via G-coupled protein receptors (GPCRs). GPCRs are 
characterized by their cell surface 7-transmembrane domain 
that transduces extracellular signals across the membrane 
in order to initiate intracellular signaling pathways through 
activation of a trimeric G-protein (69). GPCR signaling 
has been traditionally characterized through 4 different 

Figure 1. Known interactions among the oxytocinergic, dopaminergic, and opioidergic systems in pair bond formation and maintenance. While 
several neuromodulatory systems have been implicated in pair bonding, interactions of the oxytocinergic system with reward modulatory systems, 
such as the dopaminergic and opioidergic systems, have been the most well-studied. Known interactions are indicated in the above diagram with 
reference numbers. Further research is needed to address how the brain region–specific interaction(s) among these systems change depending on 
the stage of a pair bond and the sex of the animal. Abbreviations: D1R, dopamine 1 receptor; D2R, dopamine 2 receptor; DA, dopamine; KOR, κ opioid 
receptor; MOR, μ opioid receptor; mPFC, medial prefrontal cortex; NAc, nucleus accumbens; OP, opioid; OXT, oxytocin. Photo credits Paul Muhlrad 
(left) and Todd Ahern (right).
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G-protein classes: Gαs, Gαi/o, Gαq/11, Gα12/13 (70). But re-
search over the last several decades demonstrates additional 
models of GPCR signaling including G-protein coupled 
receptor kinases (GRKs) and β-arrestins (71, 72) and 
homo- and hetero-dimerization of monomeric GPCR mol-
ecules (73, 74). Despite the structural and general function 
commonality of GPCRs, individual GPCRs are extremely 
functionally diverse given the wide variety of ligands and 
stimuli they respond to, including but not limited to: bio-
genic amines, hormones, peptides, cations, lipids, glycopro-
teins, pheromones, synthetic drugs, tastes, odors, stress, and 
light (75, 76). Therefore, activation of GPCRs can lead to 
various effects on cellular function, including cell homeo-
stasis, intra- and extracellular signaling, and physiology at a 
macro level; and initiation/termination of transcription, ac-
tivation of ion channels and neuronal excitability, and hor-
mone release at a micro level. As such, signaling interactions 
between and among the oxytocinergic, dopaminergic, and 
opioid systems broadly encompass multiple potential levels 
of biological function—from one system changing the tran-
scriptional regulation of another to synergistic effects on 
neuronal activity within or between cell populations.

While studies of the interactions between these 
neuromodulatory systems are far from exhaustive, here we 
provide examples across multiple levels of biological inter-
action, ranging from effects on gene expression to signaling 
mechanisms. For the purposes of this review, we use the 
term “interaction” to refer to any biological effect of one 
system on another, as well as synergistic effects of coordin-
ated activation. We posit that the interactions among these 
systems will be critical to our understanding not only of 
complex social behavior, but specifically for pair bonding, 
and that such interactions represent one mechanism for 
integrating multiple internal and external information 
sources as outlined below.

Concurrent OXT and DA signaling is required for 
bond formation

Pharmacological studies suggest that concurrent activation of 
OXTR and D2R in the NAc is required for partner preference 
formation in female prairie voles (77). Specifically, boosting 
activity in one of these systems via agonist administration is 
not sufficient to overcome the impairing effects of blockade 
in the opposite system. Thus, neither of these systems serves 
as an upstream regulator of the other with respect to bond 
formation (77). However, whether the signaling between 
D2R and OXTR is occurring in a cell-autonomous fashion, 
and/or how this combined signaling impacts circuit function 
remains unknown. Specifically, whether OXTR expression is 
biased toward D1-expressing or D2-expressing NAc medium 
spiny neurons has not been determined. OXTR is typically 

Gq coupled while D2-like receptors are typically Gi coupled. 
If OXTR and D2R activation are occurring within different 
cell populations, concurrent activation may shift the balance 
of activity across these populations. Alternately, if signaling 
is occurring in a cell-autonomous fashion, coordinated acti-
vation of different intracellular signaling pathways may be 
required for and result in activation of specific bond-relevant 
transcriptional programs.

We may be able to gain some insights into OXT/DA 
interactions more broadly by drawing on what is known 
about how systems modulate the complex relationship be-
tween social bonding and drugs of abuse (78-80). Drugs 
of abuse have the capacity to impair pair bonds in prairie 
voles, and pair bonds have been demonstrated to protect 
against the abusive properties of amphetamine and meth-
amphetamine, effects that may be mediated by an inter-
action between oxytocinergic and dopaminergic systems. 
Specifically, amphetamine exposure in female prairie voles 
has been shown to (i) block partner preference formation; 
(ii) decrease OXTR in the medial prefrontal cortex (mPFC) 
and D2R the NAc; and (iii) increase extracellular DA in 
the NAc (78). However, OXT infusion into the mPFC re-
stored partner preference in amphetamine-exposed animals 
and increased NAc DA levels. Relatedly, other studies have 
examined that pair bonds are protective against the re-
warding properties of amphetamine, and that this buffering 
of reward is mediated through a D1-specific mechanism in 
male prairie voles (81). Taken together, these data indicate 
that the OXT and DA systems may interact not only in pair 
bonding, but also in mediating the relationship between 
drugs of abuse and social bonding, and that this is medi-
ated through specific OXT and DA signaling pathways.

There is further evidence that OXT/DA system inter-
actions are evident in work from other species, particularly 
in regard to gating reward and impacting social behavior. 
For example, in mice OXT gates DA release in the ventral 
tegmental area (VTA), another node in the mesolimbic re-
ward circuitry (82, 83). More specifically, Xiao et al dem-
onstrated in male and female mice that OXT enhances the 
activity of DA neurons in the VTA. However, this effect is 
region-specific, as the authors also demonstrated that OXT 
decreases activity of DA neurons in the substantia nigra, 
pars compacta (SNc) that subserve locomotion and ex-
ploratory activities (83). Furthermore, through optogenetic 
manipulation of OXT, Hung et al further corroborated the 
finding that OXT release in the VTA increased activity in 
DA cells, specifically on those cells that project to the nu-
cleus accumbens and that this OXT release and increased 
activity of DA neurons enhanced prosocial behaviors in 
male mice (82). Taken together, these studies demonstrate 
that OXT is able to bias DA signaling toward social reward 
and supports the interaction of these 2 systems.
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Oxytocin-opioidergic interactions are 
bidirectional

Oxytocinergic and opioidergic system interactions have 
been documented in multiple species, predominately at 
the level of ligand production and release. One of the 
first links between the OXT and opioid systems was dem-
onstrated by Bale and Dorsa in 1997 in rats (84) and 
by Young et  al in 2001 in prairie voles (85). Bale and 
Dorsa demonstrated that OXTR activation upregulated 
preproenkephalin gene expression (the precursor for en-
kephalin, the endogenous ligand for MOR) in rats, and 
Young et al showed that, in female prairie voles, an infu-
sion of OXT into the NAc also increased gene expression 
of preproenkephalin, but did not affect the expression 
of preprodynorphin, the precursor for the KOR ligand, 
dynorphin. It is also worth noting that Resendez et al dem-
onstrated an increase in NAc MOR mRNA during bond 
formation, a time associated with increased NAc OXT re-
lease, although whether this increase is OXT-dependent 
has not been directly tested (42, 55, 56). Thus, while pre-
liminary evidence suggests that OXT signaling can have 
top-down effects on the opioid system, the specific direc-
tionality is not known, as studies similar to what has been 
done with OXT and DA have not been performed with 
OXT and opioids to determine whether signaling occurs 
upstream, downstream, or concurrently. However, effects 
of OXTR on preproenkephalin suggest that OXT is po-
tentially upstream in some contexts.

Conversely, endogenous opioids affect OXT release in 
various social behaviors, although this has not been directly 
examined in pair bonding. The relationship between OXT 
and opioids has been studied within the context of preg-
nancy, postpartum, lactation, maternal behavior, and drug 
addiction (86-89). In pregnant rats, MORs are primarily 
involved in the inhibition of the OXT response, with no ap-
parent involvement of KORs (90). However, other studies 
have reported that endogenous opioids decrease OXT re-
lease by MOR and KOR mechanisms (91, 92). In human 
studies, morphine inhibited the expected rise in plasma 
OXT seen both during the first stage of labor (93) and after 
delivery (94). In lactating rhesus macaques, females pos-
sessing the G allele of the MOR gene C77G SNP had higher 
OXT levels in their cerebrospinal fluid as compared with 
homozygous C females, but the 3 genotypes did not exhibit 
differences in quality of maternal behavior (87). Douglas 
and colleagues found that, in sex‐steroid–treated female 
rats, naloxone strongly increased stress-induced OXT re-
lease, revealing strong endogenous opioid inhibition of 
OXT activity (88). Additionally, MOR and KOR antagon-
ists were also able to potentiate stress-induced OXT secre-
tion in rats. Specifically, MOR antagonists potentiated the 

immobilization response, and KOR antagonists potentiated 
a response to dehydration, demonstrating that different re-
ceptor mechanisms are associated with different functional 
stimuli (95).

In summary, endogenous opioids have the capacity 
to decrease or inhibit OXT secretion in both animal and 
human studies (92). Both MORs and KORs appear to be 
involved in mediating the effects of opioids on OXT, and 
receptor involvement depends on physiological context (eg, 
stress, pregnancy, etc). However, whether opioid modu-
lation of OXT secretion occurs as a function of opioid 
signaling during social behavior, specifically pair bonding, 
remains unknown. Given the known timing of OXT release 
in pair bonding and the involvement of both MOR and 
KOR in various phases of pair bonding, there is likely to 
be crosstalk between the 2 systems. A study in prairie voles 
by Ulloa and colleagues demonstrate that the reward state 
induced by one ejaculation or 6 hours of mating (processes 
which release OXT and DA) is opioid dependent in males, 
but not females (89). This study indicates that there is the 
potential for sex differences within prairie voles in regard 
to opioid and OXT system interactions.

Dopamine and opioid systems interact to 
maintain pair bonds

Opioid and dopaminergic systems regulate reward, motiv-
ation, emotional responses, cognition, and autonomic func-
tions. Furthermore, the organization of these 2 systems is 
intimately intertwined. MOR’s endogenous ligand, enkeph-
alin, is expressed in D2-like neurons (96-98) while KOR’s 
endogenous ligand, dynorphin, is expressed in D1-like 
neurons (99-101). Given that D2- and D1-like receptors 
have been implicated in pair bond formation and mainten-
ance, respectively, this led to specific hypotheses about the 
role of MOR and KOR in selective affiliation and aggres-
sion, respectively (56, 102, 103).

Within the context of pair bonds, Resendez and col-
leagues demonstrated that D1-like receptors act upstream 
of KOR in the NAc shell to mediate aggressive behavior 
in pair-bonded males (42). In a series of experiments 
using D1R agonists/antagonists and KOR agonists/ant-
agonists, they showed that KOR-mediated decrease of 
stimulated DA release in the NAc shell was greater in 
brain slices from pair-bonded males compared with non-
bonded animals. However, non-bonded and pair-bonded 
females showed no difference in KOR-mediated DA re-
lease. Interestingly, both males and females show an in-
crease in D1R mRNA levels in the ventral striatum, and 
males show a decrease in KOR binding in the ventral 
NAc shell after 2 weeks of cohabitation. The evidence 
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for interaction of D1R and KOR was further strength-
ened through behavioral studies showing that attack 
frequency decreased when males or females received a 
local infusion of D1R antagonist or D1R agonist + KOR 
antagonist in the NAc, but returned to baseline levels 
when animals received a local infusion of D1R antag-
onist + KOR agonist. Similarly, attack latencies returned 
to normal levels when the antagonist for the D1R-like 
receptor was administered in combination with a KOR 
agonist, further providing support that D1R-mediated 
aggression occurs through downstream activation of 
KORs (Fig. 2). Finally, Resendez and colleagues demon-
strated that male-specific alterations in the dynorphin/
KOR system buffers against the rewarding properties of 

amphetamine, providing further support on the import-
ance of investigating these system interactions and their 
possible translational importance.

Microglia as System-level Regulators of 
Neuromodulation of Social Behavior

As we strive to understand the neuromodulatory organ-
ization of social behavior, it is important to note that 
neurons are not the only cell types that play a role within 
behavioral circuits and systems. Microglia, the resident 
macrophages of the brain, sculpt and refine neural cir-
cuits, and recent work has shown that microglia help 
organize social circuits and shape social behavior via ef-
fects on neuromodulatory systems (104-109) (Fig. 3A). 
While the mechanisms surrounding social behavior are 
complex, and the studies examining how glia modulate 
social behavior are newly emerging, there is evidence that 
microglia work in conjunction with the oxytocinergic, 
dopaminergic, and potentially, opioidergic systems to 
shape microglia function, neural circuits, and social be-
haviors, including pair bonding. However, while the evi-
dence to date suggests a hub-like position for microglia 
in integrating concurrent signaling information from 
nonapeptide and reward systems, this speculation re-
quires additional research, which is likely to hinge on the 
development and implementation of microglial-specific 
manipulations in prairie voles.

Microglial Mechanisms Regulate Social 
Behavior

Depletion of microglia leads to persistent 
changes in social behavior

While the role of microglia in cellular brain development 
is relatively well-studied, less is known about the micro-
glial role in behavioral development. A handful of studies 
have sought to determine how temporary depletion of 
microglia in early life contributes to programming of 
normal adult social behaviors (105, 128). Nelson and 
Lenz found that neonatal chemical depletion of micro-
glia via an infusion of liposomal clodronate affected 
several adult social behaviors in male and female rats 
including: increased social avoidance behavior, decreased 
passive interaction time, decreased behavioral despair as 
measured by the forced swim test, and a blunted cortico-
sterone response in females to acute stress in adulthood. 
VanRyzin and colleagues found that postnatal depletion 
of microglia using liposomal clodronate also affected 
several adult behaviors including deficits in male sexual 
behaviors, increased body weight in adult females, and 
decreased body weight in adult males. Taken together, 

Figure 2. Proposed neural mechanism of D1R and KOR pair bond–me-
diated aggression. A, Non-pair-bonded prairie voles readily approach 
novel conspecifics and have lower levels of dopamine receptor 1 and 
prodynorphin mRNA expression within the ventral striatum and less 
stimulated DA release. B, Following the establishment of a pair bond 
and after 2 weeks of cohabitation with their partner, male and female 
prairie voles aggressively reject novel conspecifics. Pair bonding 
upregulates dopamine receptor 1 and prodynorphin mRNA within the 
ventral striatum and enhances DA release within the NAc shell of both 
males and females. Pair-bonded males also show a decrease in KOR 
binding within the NAc shell. This figure is reprinted with permission 
from the authors of “Dopamine and opioid systems interact within the 
nucleus accumbens to maintain monogamous pair bonds,” Resendez 
et al 2016, eLife, (42) https://doi.org/10.7554/eLife.15325.022
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these studies support a role for microglia in the normal 
development of motivated behaviors.

Similarly, Zhan and colleagues demonstrated that mice 
deficient in Cx3cr1, a chemokine fractalkine receptor, dem-
onstrate a reduced number of microglia, and ultimately 
show decreased functional connectivity between the pre-
frontal cortex and hippocampus (104). Furthermore, al-
tered social and repetitive behaviors were observed, such 
as reduced social exploration, decreased social interaction, 
and increased repetitive self-grooming behaviors under 
stressful conditions (104). These data imply a critical role 
for microglia in sculpting neural social circuit function and 
give insight into a potential mechanism that can contribute 
to aberrant social behaviors.

Microglia as master regulators of transitions in 
social play behavior

Juvenile male rats exhibit high levels of social play that 
wane as they transition to adulthood; females also play 
but at reduced levels (129). Microglia have been implicated 
in mediating both the onset and eventual curbing of this 
behavior (106, 108). In particular, sexual dimorphism in 
testosterone-mediated endocannabinoid tone sculpts sex 
differences in juvenile rat social play via microglial phago-
cytosis (108). The neonatal testosterone surge increases 
endocannabinoid tone, and thereby increases microglial 

phagocytosis of newborn astrocytes in the medial amyg-
dala of male rats. This leads to increased social play in ex-
clusively male, and not female, juvenile rats.

Microglia have also been implicated in closing the de-
velopmental social play window in rats through NAc D1R 
downregulation during adolescence (106, 130). This mech-
anism of patterning also occurs in a sexually dimorphic 
manner. More specifically, in males, D1Rs tagged by 
Complement Receptor 3 (C3) are phagocytosed by micro-
glia, resulting in decreased social play. Conversely, D1R 
downregulation in female rat adolescence is not associated 
with microglia and C3 immune signaling, and the authors 
speculate that this process is regulated by some other un-
known protein. Taken together, the above-cited studies 
(106, 108) indicate that microglia modulate social play be-
havior in sex-specific manners, and that these mechanisms 
vary depending on the brain region examined.

Interestingly, the 2 studies above (106, 108) that deter-
mined how microglia modulate social play behavior were 
done in 2 brain regions well-studied within the context 
of prairie voles and social behavior, the amygdala, and 
the NAc. Specifically, the amygdala is known to regulate 
various aspects of prairie vole social behavior (131, 132) 
although the role of microglia in mediating these behaviors 
has not been explored. In a model of social defeat, male and 
female prairie voles display social avoidance, in addition 
to increased D1R protein levels (132). Relatedly, increasing 

Figure 3. Oxytocin-, dopamine-, and opioid-mediated microglial function. A, Summary of microglia functions related to neurons and the immune 
system. B, A simplified schematic demonstrating microglia functions while in the surveilling/resting state and while in the activated state. While 2 
activated state phenotypes are demonstrated here, there is evidence that there are more activation phenotypes and that they exist amongst a spec-
trum (110) C-E, Microglia work in conjunction with the oxytocinergic, dopaminergic, and potentially, opioidergic systems to shape microglia function, 
neural circuits, and social behaviors. Here is a summary of oxytocin- (C; (111-116), dopamine- (D (117, 118), and opioid- (E (117, 119-127) mediated 
microglial function.
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D1R signaling pharmacologically was sufficient to induce 
a socially avoidant state. And finally, microglia number 
and colonization increase in the medial amygdala in male 
prairie voles when exposed to low doses of the endocrine 
disruptor bisphenol A (BPA) and in female prairie voles at 
high doses of BPA (133). Interestingly, these doses of BPA 
have been demonstrated to abrogate partner preference in 
female prairie voles when assessed after 3 hours of pairing 
without mating (134). The effect of BPA on partner pref-
erence in male prairie voles is not known as the untreated/
control male prairie voles did not form a partner preference 
under these pairing conditions.

Furthermore, as previously discussed in this review, many 
studies surrounding pair bonding have focused on the NAc 
and the DA system. Of relevance to microglia pruning D1R 
synapses in the NAc study, the ratio of D1R to D2R has 
been documented to change in the NAc as prairie voles tran-
sition from pair bond formation to maintenance. Therefore, 
these developmental reductions in social play behavior 
found in the NAc of rats mirror the reduction in general 
prairie vole affiliative behavior following bond formation. 
While the specific molecular mechanisms remain unknown, 
glial-mediated regulation of DA receptors may contribute 
to bond-associated behavioral transitions. Moving forward, 
it would be interesting to examine if microglia have a role 
in modulating well-known changes in DA receptor levels in 
the NAc during the transition from pair bond formation to 
pair bond maintenance, and if sex differences exist in the 
molecular mechanism of the development of a pair bond.

Lipopolysaccharide, a known microglia 
activator, induces partner preference in female 
prairie voles

While the above outlines the general role of microglia in af-
filiative social behavior, a role for microglia in pair bonding 
is further supported by the finding that lipopolysaccharide 
(LPS), which activates microglia, induces partner prefer-
ence (135). Broadly, LPS administration has been used to 
examine the mechanism underlying alterations in sexual, 
parental, and other social interaction behaviors associ-
ated with sickness behavior (135). Sickness behavior is a 
response to infection characterized by anorexia, depressed 
activity, loss of interest in usual activities, and disappear-
ance of body-care activities (136). LPS is a known endo-
toxin that induces a proinflammatory cascade by binding 
to Toll-like receptor 4 (TLR4), predominantly expressed 
in microglia in the central nervous system (137). LPS has 
been used in several models to induce an acute immune re-
sponse within an animal (135) and to activate microglia in 
cell culture studies (111, 138, 139) (Fig. 3B). Importantly, 
LPS has been shown to cross the blood-brain barrier (140) 

and systemic injections have been demonstrated to cause 
microglial activation and neuroinflammation (141, 142). In 
prairie voles, a single LPS injection facilitated partner pref-
erence formation at 6 hours in female prairie voles, but not 
male prairie voles (135). These results were somewhat sur-
prising as other stress-inducing manipulations, including 
manipulations of the hypothalamic-pituitary-adrenal axis, 
typically reduce bonding in female prairie voles (143, 144). 
However, the authors note that the “involvement of LPS 
with central hormonal and neurotransmitter systems are 
proximate mechanisms through which LPS may facilitate 
pair bonding.”

Although the neural circuitry involved in processing sig-
nals from the immune system is not yet fully understood, 
there are several areas of overlap in the systems known 
to be implicated in LPS exposure and pair bonding—
including DA release and OXT release. First, LPS admin-
istration increases DA release in  the nucleus accumbens 
(145) and locus coeruleus (146) in rats. As stated previ-
ously, DA release, in the NAc specifically is a requirement 
for pair bonding. Second, LPS also increases OXT release 
in the posterior pituitary gland in rats (147, 148). However, 
it has not been documented if LPS increases OXT release 
in other brain regions. Therefore, given that LPS facilitates 
partner preference formation in female prairie voles, acti-
vates microglia, and that LPS has known effects on DA and 
OXT release in other species, it is plausible that microglia 
may play a role within pair bonding, particularly within a 
pathological inflammatory context.

However, relatedly, the effect of a single LPS challenge 
during the postnatal period has been examined in mice, 
and differential effects have been found in males in fe-
males regarding effects on adult social behavior (149). 
More specifically, neonatal LPS treatment decreased soci-
ability in adult female, but not male mice. LPS-treated fe-
males also displayed reduced social interaction and social 
memory in a social discrimination task as compared to 
saline-treated females. The authors stated that these ef-
fects appear to be independent of microglia inflammatory 
signaling given that MyD88 knockdown (which prevents 
LPS-induced release of the proinflammatory cytokines 
TNFα and IL-1β) did not prevent LPS-induced changes. 
These data highlight the importance performing studies 
at different periods of development in both sexes in a 
species-specific manner. Smith et  al found that a single 
neonatal LPS injection results in reduced sociability in 
adult female mice and not male mice, whereas Bilbo et al 
found that a single LPS injection in adult prairie voles 
increases partner preference in female prairie voles and 
not male prairie voles. Importantly, sociability tests were 
done with animals of the same sex, so direct relevance to 
pair bonding remains a topic of future research.
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Microglia express OXTR, D1R, D2R, MOR, 
and KOR

The functional properties of microglia also suggest that 
they are responsive to OXT (111-116), DA (117, 118), and 
opioid signaling (117, 119-127) (Fig.  3C-3E). Of these, 
the most intriguing role for modulation of microglia as 
potentially important mediators of bonding comes from 
studies of DA and microglial function. Specifically, studies 
suggest microglia respond to D1R and D2R-specific lig-
ands through increased microglial migration, and chronic 
DA stimulation decreased LPS-induced microglial nitric 
oxide production. Thus, DA release may function to at-
tract microglia with DA receptors to areas with dopa-
minergic transmission (118). This could be relevant not 
only in development, but also when DA is released during 
mating and pair bond formation, and it provides further 
support for the hypothesis that DA is a potential mediator 
of neuroimmune mechanisms regulating social behavior 
(130). However, it remains to be determined if microglia 
expression and behavior change throughout pair bond for-
mation, maintenance, or dissolution.

Regarding microglia and OXTR functional studies, 
LPS upregulates OXTRs in microglia and macrophages 
(111, 142, 150). OXT dampens proinflammatory path-
ways in these cell types, but through separate mechanisms. 
Microglia work via a decrease in ERK and p38 phosphor-
ylation mechanism (142), and peripheral macrophages act 
through a decrease in p65 subunit of NF-kB phosphoryl-
ation mechanism (111, 150) to reduce proinflammatory 
pathways. Relatedly, pretreating LPS-exposed mice with 
OXT decreases microglial activation as determined by 
Iba-1 expression and decreases proinflammatory factor 
levels of TNF-α and IL-1β in the prefrontal cortex of ani-
mals, with the same effects being replicated in microglia 
studies in vitro (142). The authors concluded, as several 
others have (111-116, 150), that OXT may have anti-
neuroinflammatory properties, in which case it would 
be highly probable that microglia would be involved in 
mediating the anti-inflammatory properties of OXT in 
the brain. Intriguingly, the release of OXT during pair 
bond formation and OXT’s putative role in decreasing the 
proinflammatory responses of microglia could serve as a 
potential mechanism underlying the stress-protective ef-
fects of pair bonds (151, 152).

In regard to the opioid system, both MORs and KORs 
(but not DORs) appear to be present in microglia, ac-
cording to descriptive and/or functional studies (117, 119-
126), where they both appear to have anti-inflammatory 
properties. MOR studies demonstrate inhibition of chemo-
taxis and microglial migration, as well as increased BDNF 
gene expression (121, 122, 124, 153) in several systems 

including rat, cat, and human fetal microglia. Additionally, 
morphine inhibits RANTES (regulated upon activation, 
normal T-cell expressed and secreted chemokine) produc-
tion in activated microglia (124) and triggers microglial 
apoptosis (127). KOR studies demonstrate that KOR agon-
ists mitigate cytokine or PMA-induced superoxide pro-
duction (124, 126, 154, 155) and that KOR agonists also 
attenuate HIV-related toxicity and quinolinate release from 
human fetal microglia (126, 155). Thus, while signaling 
via these receptors in microglia is generally classified as 
anti-inflammatory, their potential role in social behavior 
remains largely unexplored. Notably, MORs and KORs are 
both implicated in juvenile rat social play (156) and, as pre-
viously mentioned, pair bonding.

A recent paper by Rivera and colleagues has provided 
some evidence that microglial MyD88 signaling is pro-
tective in reward learning and maintenance and that 
impairing this neuroimmune signaling pathway enhances 
opioid drug seeking and reward memories in male mice 
(157). More specifically, the authors demonstrated that in 
animals that had morphine (a known MOR agonist) con-
ditioned place preference, MyD88 depletion in microglia 
resulted in increased numbers of immature neurons in the 
dentate gyrus. Furthermore, this lack of MyD88-signaling-
induced increase in immature neurons was associated with 
prolonged extinction and enhanced reinstatement of a re-
ward memory (157). Thus, given that microglia signaling via 
these opioid receptors is generally classified as anti-inflam-
matory and that microglia have been documented to re-
spond directly to morphine, among other opioid agonists, 
it is possible that microglia may play a physiological role 
in modulating adult hippocampal neurogenesis through 
the phagocytosis of newborn neural precursor cells. This 
would enable microglia to mediate not only drug/context 
associations, but also other forms of learning and memory 
involving reward, such as pair bonding.

Why Is it Important to Examine These System 
Interactions?

The molecular toolkit hypothesis posits that a handful of 
neuromodulatory systems underlie social behavior across 
species (67, 158-161). To date, explanations for how these 
systems mediate species differences in social behavior have 
investigated differences in receptor patterning or ligand 
production/release. We posit that interactions across rele-
vant neuromodulatory systems may also have contributed 
to the elaboration of social behaviors in certain species. In 
particular, such interactions may be critical for the evolu-
tion of more complex forms of social behavior, such as pair 
bonding. For instance, the coordinated signaling of OXT 
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and DA as outlined above may provide a mechanism by 
which social information conveyed by OXT is integrated 
with DA reward signaling to produce a partner-reward as-
sociation underlying a pair bond. As such, a further under-
standing of interactions between neuromodulatory systems 
in the context of pair bonding may elucidate the evolution 
of more complex, human-relevant social behaviors.

In addition, neuromodulatory systems represent 
common clinical targets. For instance, DA systems are 
targeted by pharmacotherapies for mental illness and 
neurodegenerative diseases (162-166) and opioids are rou-
tinely used for pain management and have great potential 
for abuse (167, 168). While less developed, OXT systems 
have recently become the focus of potential treatments for 
addiction, schizophrenia, and autism (169-172). A  better 
understanding of interactions among these systems may aid 
in the prediction of side-effects, the identification of new 
druggable targets, and the use of precision-based medicine 
to incorporate data on potential sex differences, as well as 
individual genetic variability.

Finally, as we look to expand our viewpoint and deter-
mine how systems within the brain are interacting with 
one another, it is important we also consider all pieces of 
the system and/or circuit that could contribute to commu-
nication, such as cell types in addition to neurons, including 
microglia, astrocytes, oligodendrocytes, and others. As briefly 
outlined here, microglia have the capacity to be system-level 
regulators of neuromodulation of social behavior, and as 
such, it would behoove us all to take their role into account 
when attempting to identify new clinical targets.
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